Abstract

Techniques for the simulation of intense particle beams are investigated with respect to the required number of simulation particles. It is shown that for nonchaotic systems it is advantageous if the particles initially are not distributed in a statistical manner but rather arranged in a regular pattern in phase space. This reduces the number of required simulation particles drastically. In the case of such an initially regular arrangement of particles the algorithm which assigns the charges of the particles to the computation mesh becomes of prime importance. The performances of different commonly used algorithms are investigated. The Gaussian assignment algorithm proved far superior to other more commonly used techniques, allowing simulations even at the theoretical limit of 1 particle per cell. Examples for very accurate simulations of beam dynamics with very few particles using an initially regular mesh of particles and Gaussian assignment are given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.