Abstract

A kind of gene detection biochip model based on biological micro electro mechanical systems (BioMEMS) technology and micro optical electro mechanical systems (MOEMS) technology is designed and simulated. In order to detect whether there are nucleic acid components in the testing samples, the biochip in this study issues horizontal light by laser, then receives and reads the deformation signals of MEMS cantilever by optical detector. The MEMS optical reflecting system can amplify MEMS cantilever deformation signal 22 times by micro reflectors which are set on the side wall of the cantilever free end. In order to improve optical detection sensitivity, gold nanoparticles (GNPs) which are combined with hybridization information is taken to aggravate MEMS cantilever, and employ Au - S chemical bond of GNPs and dithiol HS(CH2)6SH to combine and fix DNA probe, and then employ target DNA which is marked with biotin to combine GNPs by Biotin - Streptavidin combining. The simulation results show that this biochip can detect biological samples fast, high throughput, low cost, high sensitivity and reliably.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call