Abstract
ABSTRACTThe dispersion of gaseous pollutant around buildings is complex due to complex turbulence features such as flow detachment and zones of high shear. Computational fluid dynamics (CFD) models are one of the most promising tools to describe the pollutant distribution in the near field of buildings. Reynolds-averaged Navier-Stokes (RANS) models are the most commonly used CFD techniques to address turbulence transport of the pollutant. This research work studies the use of closure model for the gas dispersion around a building by fully resolving the viscous sublayer for the first time. The performance of standard model is also included for comparison, along with results of an extensively validated Gaussian dispersion model, the U.S. Environmental Protection Agency (EPA) AERMOD (American Meteorological Society/U.S. Environmental Protection Agency Regulatory Model). This study’s CFD models apply the standard and the turbulence models to obtain wind flow field. A passive concentration transport equation is then calculated based on the resolved flow field to simulate the distribution of pollutant concentrations. The resultant simulation of both wind flow and concentration fields are validated rigorously by extensive data using multiple validation metrics. The wind flow field can be acceptably modeled by the model. However, the model fails to simulate the gas dispersion. The model outperforms in both flow and dispersion simulations, with higher hit rates for dimensionless velocity components and higher “factor of 2” of observations (FAC2) for normalized concentration. All these validation metrics of model pass the quality assurance criteria recommended by The Association of German Engineers (Verein Deutscher Ingenieure, VDI) guideline. Furthermore, these metrics are better than or the same as those in the literature. Comparison between the performances of and AERMOD shows that the CFD simulation is superior to Gaussian-type model for pollutant dispersion in the near wake of obstacles. AERMOD can perform as a screening tool for near-field gas dispersion due to its expeditious calculation and the ability to handle complicated cases. The utilization of to simulate gaseous pollutant dispersion around an isolated building is appropriate and is expected to be suitable for complex urban environment.Implications: Multiple validation metrics of turbulence model in CFD quantitatively indicated that this turbulence model was appropriate for the simulation of gas dispersion around buildings. CFD is, therefore, an attractive alternative to wind tunnel for modeling gas dispersion in urban environment due to its excellent performance, and lower cost.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.