Abstract
The paper presents a probabilistic method for the simulation of fatigue crack growth from crack-like defects in the combined operating and residual stress fields of an arbitrary component. The component geometry and stress distribution are taken from a standard finite element stress analysis. Number, size and location of crack-like defects are ‘drawn’ from probability distributions. The presented fatigue assessment methodology has been implemented in a newly developed finite-element post-processor, P • FAT, and is useful for the reliability assessment of fatigue critical components. General features of the finite element post-processor have been presented. Important features, such as (i) the determination of the life-controlling defect, (ii) growth of short and long cracks, (iii) fatigue strength and fatigue life distribution and (iv) probability of component fatigue failure, have been treated and discussed. Short and long crack growth measurements have been presented and used for verification of the crack growth model presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.