Abstract
AbstractThe numerical estimation of evolving damage under low cycle fatigue loading condition has been performed in the near‐α titanium alloy IMI‐834 at 823 K temperature. By using the experimentally determined parameters as input, numerical simulation of fatigue damage has been performed on round specimens using finite element analysis. Coupled deformation‐damage model has been established for this alloy for simulation of damage evolution in a three‐dimensional cylindrical low cycle fatigue test specimen. The fatigue damage estimates from numerical simulation are observed to be in close agreement with the experimental results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Fatigue & Fracture of Engineering Materials & Structures
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.