Abstract
Electrical responses of the subsurface can be used to identify geologic strata, locate anomalies, detect and delineate contamination, among many other applications. All these applications depend on the spatial variations of electrical properties in the subsurface and the resulting flow pattern of electric current. Due to the heterogeneity of the subsurface and complex boundary conditions, three-dimensional electric current flow problems are not easy to analyze, in particular when the response is frequency- and/or time-dependent. In this paper, a method of electric circuit analogy is proposed to simulate the electrical responses of geomaterials using the circuit simulator SPICE. The technique will allow simulation of more complex electrical conduction behavior of geomaterials without much extra effort. The excellent agreement between simulated results and analytical solutions developed for surface geophysical techniques establishes the viability of the method. Limitations of the approach and potential solutions to relax these limitations, and other potential applications of the technique in geosciences are also discussed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.