Abstract
The term “dispersionless injection” refers to a class of events which show simultaneous enhancement (injection) of electrons and ions with different energies usually seen at or near geosynchronous orbit. We show that dispersionless injections can be understood as a consequence of changes in the electric and magnetic fields by modeling an electron injection event observed early on January 10, 1997 by means of a test‐particle simulation. The model background magnetic field is a basic dipole field made asymmetrical by a compressed dayside and a weakened nightside. The transient fields are modeled with only one component of the electric field which is westward and a consistent magnetic field. These fields are used to model the major features of a dipolarization process during a substorm onset. We follow the electrons using a relativistic guiding center code. Our simulation results, with an initial kappa electron energy flux spectrum, reproduce the observed electron injection and subsequent drift echoes and show that the energization of injected electrons is mainly due to betatron acceleration of the preexisting electron population at larger radial distances in the magnetotail by transient fields.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.