Abstract
Substorm-associated electron injection, starting on Apr. 5, 2017, was observed by the ERG (Arase), GOES-15 and GOES-13 spacecraft. ERG successfully observed a clear and sufficient extent of manifestations of the dispersionless injection and the successive drift echoes at radial distances shorter than geosynchronous orbit (GEO) during a unique period of the satellite mission. The GOES-15 and GOES-13 measured the drift echoes of the event as well. The observations provided constraints to study the event and opportunities to make adjustments to the previous substorm injection models. Models built on an impulsive earthward-propagating electromagnetic field have been proposed to simulate substorm injections. So far such models showed good results of dispersionless features compared to spacecraft observations, but could only produce drift echoes with periods somewhat different from geosynchronous observations. To study the substorm injection event and produce drift echoes with better periods, we modify an existing model in the literature. ERG and GOES spacecraft measured tens to a few hundred keV electrons injected during the substorm, providing important seed population for ring current and radiation belts. Since the electron energies of interest are comparable to the rest mass energy, our work further provides the relativistic form of the previous model and employs a semiempirical model as background field instead of a dipole-based one in the previous study. Our work shows that the main features of the substorm injection event are successfully reproduced with the drift echoes periods showing a better fit to the observations of this event when relativistic effects are considered. Despite possible deviation of the model magnetic fields from reality, the relativistic computations still show dominant effect on the drift echoes periods. The substorm injection expanding earthward farther than GEO was observed by ERG, and the event can be better simulated by the further-developed model shown in this work.
Highlights
Particle injections associated with substorms were usually studied based on observations at the geosynchronous orbit (GEO)
It is shown that the main features of fluxes observed by ERG, GOES-15 and GOES-13 are successfully reproduced with better drift echoes periods by our modeling including relativistic effects
Substorm injections were usually studied based on geosynchronous observations previously (e.g., Chang et al 2012)
Summary
Particle injections associated with substorms were usually studied based on observations at the geosynchronous orbit (GEO). It is shown that the main features of fluxes observed by ERG, GOES-15 and GOES-13 are successfully reproduced with better drift echoes periods by our modeling including relativistic effects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.