Abstract

The three-dimensional architecture of chromosomes, their arrangement, and dynamics within cell nuclei are still subject of debate. Obviously, the function of genomes-the storage, replication, and transcription of genetic information-has closely coevolved with this architecture and its dynamics, and hence are closely connected. In this work a scale-bridging framework investigates how of the 30nm chromatin fibre organizes into chromosomes including their arrangement and morphology in the simulation of whole nuclei. Therefore, mainly two different topologies were simulated with corresponding parameter variations and comparing them to experiments: The Multi-Loop-Subcompartment (MLS) model, in which (stable) small loops form (stable) rosettes, connected by chromatin linkers, and the Random-Walk/Giant-Loop (RW/GL) model, in which large loops are attached to a flexible non-protein backbone, were simulated for various loop and linker sizes. The 30nm chromatin fibre was modelled as a polymer chain with stretching, bending and excluded volume interactions. A spherical boundary potential simulated the confinement to nuclei with different radii. Simulated annealing and Brownian Dynamics methods were applied in a four-step decondensation procedure to generate from metaphase decondensated interphase configurations at thermodynamical equilibrium. Both the MLS and the RW/GL models form chromosome territories, with different morphologies: The MLS rosettes result in distinct subchromosomal domains visible in electron and confocal laser scanning microscopic images. In contrast, the big RW/GL loops lead to a mostly homogeneous chromatin distribution. Even small changes of the model parameters induced significant rearrangements of the chromatin morphology. The low overlap of chromosomes, arms, and subchromosomal domains observed in experiments agrees only with the MLS model. The chromatin density distribution in CLSM image stacks reveals a bimodal behaviour in agreement with recent experiments. Combination of these results with a variety of (spatial distance) measurements favour an MLS like model with loops and linkers of 63 to 126kbp. The predicted large spaces between the chromatin fibres allow typically sized biological molecules to reach nearly every location in the nucleus by moderately obstructed diffusion and is in disagreement with the much simplified assumption that defined channels between territories for molecular transport as in the Interchromosomal Domain (ICD) hypothesis exist and are necessary for transport. All this is also in agreement with recent selective high-resolution chromosome interaction capture (T2C) experiments, the scaling behaviour of the DNA sequence, the dynamics of the chromatin fibre, the diffusion of molecules, and other measurements. Also all other chromosome topologies can in principle be excluded. In summary, polymer simulations of whole nuclei compared to experimental data not only clearly favour only a stable loop aggregate/rosette like genome architecture whose local topology is tightly connected to the global morphology and dynamics of the cell nucleus and hence can be used for understanding genome organization also in respect to diagnosis and treatment. This is in agreement with and also leads to a general novel framework of genome emergence, function, and evolution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call