Abstract

In the final sintering stage, nano-sized powder frequently forms a pore structure where most pores are surrounded by more than 5 grains. The pore structure is different from that of coarse powder. In this study, the densification behavior of nano-sized powder is modelled and simulated in the final sintering stage. The porous body has the initial size distribution of pores, represented as a Weibull function. The mechanical interaction between pores is analyzed to simulate the evolution of porosity characteristics as well as densification kinetics. The densification rate for the size-distributed pores is lower than that for single-sized ones. The experimental relationship between the densification rate and the porosity could well be reproduced by choosing appropriate pore-size distributions. The simulation also shows that the sintering stress with densification may increase or decrease depending on the size distribution, but is remarkably lower than that for single-sized pores.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.