Abstract

Based on the theory of crystal plasticity, coupled with dislocation and lath hardening models, this paper establishes a crystal plasticity finite element model describing the high temperature creep of P92 steel. Open source software was used to generate lath models with an average size of 350nm, 650nm and 950nm to explore the effect of lath coarsening on the high-temperature creep behavior of P92 steel. The results show that the roughening of the slats increases the rate of creep deformation, resulting in a decrease in the service life of the material. Observing the slat model, it can be seen that the roughening of the slats enlarges the numerical gradient of stress and strain, and aggravates the overall plastic strain of the model. The coarsening of the slats accelerates the movement of dislocations, causing the density of movable dislocations to increase, and at the same time the shear strain amplitude of the slip system increases, thereby reducing the hardening behavior of the material.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.