Abstract
Closed timelike curves (CTCs) are non-intuitive theoretical solutions of general relativity field equations. The main paradox associated with the physical existence of CTCs, the so-called grandfather paradox, can be satisfactorily solved by a quantum model named Deutsch-CTC. An outstanding theoretical result that has been demonstrated in the Deutsch-CTC model is the computational equivalence of a classical and a quantum computer in the presence of a CTC. In this article, in order to explore the possible implications for the foundations of quantum mechanics of that equivalence, a fundamental particle is modelled as a classical-like system supplemented with an information space in which a randomizer and a classical Turing machine are stored. The particle could then generate quantum behavior in real time in case it was controlled by a classical algorithm coding the rules of quantum mechanics and, in addition, a logical circuit simulating a CTC was present on its information space. The conditions that, through the action of evolution under natural selection, might produce a population of such particles with both elements on their information spaces from initial sheer random behavior are analyzed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.