Abstract

A fundamental particle in physical space subject to conservation of momentum and energy, and characterized by its average mass and its position is methodologically supplemented with an information processor – a classical Turing machine – and a randomizer both defined on an information space localized on every particle. In this way the particle can be considered a generalized Darwinian system on which natural selection could act steering the evolution on the information space of the algorithms that govern the behaviour of the particles, giving rise plausibly to emergent quantum behaviour from initial randomness. This theory is applied to an EPR-Bohm experiment for electrons in order to analyse Bell inequality violation. A model for the entanglement of two particles has been considered. The model includes shared randomness – each particle stores its own randomizer and that of its partner – and the mutual transfer of their algorithms – sharing programs – that contain their respective anticipation modules. This fact enables every particle to anticipate not only the possible future configurations of its surrounding systems, but also those of the surrounding systems of its entangled partner. Thus, while preserving locality and realism, this theory implies outcome dependence – through shared randomness – and parameter dependence – through shared anticipation – for entangled states and, as a consequence, the violation of the Bell inequality in an EPR-Bohm experiment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call