Abstract

Simulations of various beta-peptides have in the last years clarified several issues concerning peptide folding equilibria and interpretation of experimental data, especially from NMR and CD spectroscopy. These simulations involved different temperatures, pH-values, ionic strengths, solvents, and force-field parameters, but a variation of these factors for one beta-peptide has not yet been done. To investigate the influence of varying these factors, we analyze the helix stability of an all-beta3-icosapeptide bearing all 20 proteinogenic amino acid side chains, which is experimentally observed to fold into a 3(14)-helix in methanol but not in water. Structural aspects, such as hydrogen-bonded rings and salt bridges, are discussed and a comparison with NMR primary (NOE distance bounds and 3J-values) and secondary (NMR derived model structures) data is made. We further investigate the reasons for the 3(14)-helix stability/instability in methanol/water. Of all factors studied, the presence of counterions seems to be the one inducing most significant effects in the simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call