Abstract

Abstract We use kinetic Monte Carlo simulations to produce solutions of an agent-based, rate equation model of an informationally efficient, closed financial market. The simulations produce a crash in the market that is forewarned through the observation of a market instability from which the market temporarily recovers. The market remained in a quasi-stable state for a relatively large amount of time between the warning and the crash, raising the prospect that some mitigating action can be taken in time to avert the impending crash. This result has strong ramifications for the future of predicting calamitous market events, especially if some observable aspect of financial markets can be positively identified and associated with simulation parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.