Abstract

Simulation is very time consuming, especially for complex and large scale manufacturing systems. The process of collecting adequate sample data places limitations on any analysis. This paper proposes to overcome the problem by developing a neural network simulation metamodel that requires only a comparably small training data set. In the training data set, the configuration of all input data is generated by uniform design and the corresponding output data are the result of simulation runs. A dispatching problem for a complex simulation model of an automated material handling system (AMHS) in semiconductor manufacturing is introduced as an example. In the example, there are 23 4-levels factors, resulting in a total of 4 23 possible configurations. However, by using the method proposed in this paper, only 28 configurations had to be simulated in order to collect the training data. The results show that the average prediction error was 3.12%. The proposed simulation metamodel is efficient and effective in solving a practical application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.