Abstract

Histidine coordinated to Chi a is a distinct characteristic of Chl ain vivo. By using histidine analogue of 1-methylimidazole (C4H6N22) and measuring the UV/vis absorption, CD and MCD spectra of the interaction between C4H6N2 and Chl a in CCI4, we have obtained that: (i) In pure CCl4 solvent, Chl a molecule is in five-coordinate state, and two Chl a molecules form an asymmetric compact-dimer with strong coupling interaction. We propose that the two Chl a molecules are connected by two unequally coordinated Mg-O bonds (the two oxygen atoms come from the C=O of C131 keto and C17 ester, respectively); (ii) when the molar ratio of C4H6N2/Chl a is 0.5 or 1 (corresponding to 2Chl a · 1C4H6N2 and 2Chl a · 2C4H6N2, respectively), significant changes have been observed in the absorption, CD and MCD spectra, which indicate that the Chl a remains in dimer form, but the coupling interaction between them reduces greatly. We postulate that C4H6N2 replaces the ligation of C=O of C17 ester and C131 keto to Mg atoms sequentially. The two Chl a molecules linked by two weakly interacted Mg…O bonds form a relaxed-dimer. The structure of the model is essentially similar to that of the primary electronic donor, P680, of photosystem II in high plants and algae.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.