Abstract
As the scale of missions continues to expand, equipment support has emerged as a critical component of military combat effectiveness. Consequently, the supportability of a system of systems (SOS) for equipment has become as essential quality requirement alongside its performance metrics. This study systematically assessed the effectiveness of equipment SOS support through a task-driven methodology. Initially, a model for generating equipment support tasks was developed to translate the operational requirements into a sequence of support tasks. Subsequently, a simulation model was constructed to evaluate the equipment SOS support system, and solutions were derived for the corresponding SOS-level support effectiveness indexes. Finally, the feasibility and characteristics of the proposed models and simulation methodology were validated through a case study involving an emergency operational mission for an air combat group formation. The results indicate that the increased reliability of the equipment system correlates with a reduced failure rate and lower resource consumption for maintenance and support per device, thereby improving support efficiency. The methodology presented in this article provides a framework for evaluating the effectiveness of equipment SOS support while facilitating informed decision-making in information warfare conditions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have