Abstract
Reliable forest growth forecasting requires detailed tree data for forest simulation, while manual on-site collection of relevant data is work-intensive and unfeasible in larger forests. This paper proposes a complete methodology for fully automated forest growth simulation that relies primarily on airborne topographic Light Detection And Ranging (LiDAR) point clouds of individual trees. The proposed method estimates tree parameters and performs growth of individual trees based on an individual-based forest growth simulator, named BWINPro. In addition, competition and detailed asymmetric tree crown growth are modeled regarding the shading of tree crowns, which is estimated from the surrounding environment and neighbor trees. The result of the proposed approach is a new point cloud for subsequent analyses. The proposed method was validated by comparing canopy height models derived from the point clouds of the simulated trees with canopy height models derived from more recent ground truth point clouds. The results demonstrate the efficacy of the proposed method which achieves a 9.4% higher accuracy than the averaged linear regression model and, in the case of datasets with more distinct self-standing trees, where a tree crown boundary plays major role, a 4.1% higher accuracy than the directly fitted linear regression model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Applied Earth Observation and Geoinformation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.