Abstract

Accurate and efficient estimation of forest volume or biomass is critical for carbon cycles, forest management, and the timber industry. Individual tree detection and segmentation (ITDS) is the first and key step to ensure the accurate extraction of detailed forest structure parameters from LiDAR (light detection and ranging). However, ITDS is still a challenge to achieve using UAV-LiDAR (LiDAR from Unmanned Aerial Vehicles) in broadleaved forests due to the irregular and overlapped canopies. We developed an efficient and accurate ITDS framework for broadleaved forests based on UAV-LiDAR point clouds. It involves ITD (individual tree detection) from point clouds taken during the leaf-off season, initial ITS (individual tree segmentation) based on the seed points from ITD, and improvement of initial ITS through a refining process. The results indicate that this new proposed strategy efficiently provides accurate results for ITDS. We show the following: (1) point-cloud-based ITD methods, especially the Mean Shift, perform better for seed point selection than CHM-based (Canopy Height Model) ITD methods on the point clouds from leaf-off seasons; (2) seed points significantly improved the accuracy and efficiency of ITS algorithms; (3) the refining process using DBSCAN (density-based spatial clustering of applications with noise) and kNN (k-Nearest Neighbor classifier) classification significantly reduced edge errors in ITS results. Our study developed a novel ITDS strategy for UAV-LiDAR point clouds that demonstrates proficiency in dense deciduous broadleaved forests, and this proposed ITDS framework could be applied to single-phase point clouds instead of the multi-temporal LiDAR data in the future if the point clouds have detailed tree trunk points.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call