Abstract
A Parallel Genetic Algorithm (PGA) is used for a simulation-based optimization of waterway project schedules. This PGA is designed to distribute a Genetic Algorithm application over multiple processors in order to speed up the solution search procedure for a very large combinational problem. The proposed PGA is based on a global parallel model, which is also called a master-slave model. A Message-Passing Interface (MPI) is used in developing the parallel computing program. A case study is presented, whose results show how the adaption of a simulation-based optimization algorithm to parallel computing can greatly reduce computation time. Additional techniques which are found to further improve the PGA performance include: (1) choosing an appropriate task distribution method, (2) distributing simulation replications instead of different solutions, (3) avoiding the simulation of duplicate solutions, (4) avoiding running multiple simulations simultaneously in shared-memory processors, and (5) avoiding using multiple processors which belong to different clusters (physical sub-networks).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Operations Research and Information Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.