Abstract

The approach provides simulation of the gear design with high-precision profile configuration parameters to accurately predict its load capacity and stress state, which requires incessant efforts, as gear failure modes depend largely on its profile representation. The finite element analysis (FEA) is a well-known effective computational method, which many authors used to estimate the gear tooth strength against the primary failure modes of gears. This method is not only known to be time-consuming but often expensive, it employs approximate geometry that resulted in a coarse mesh. The tooth strength and deformation modes were obtained from a three-dimensional gear model based on the trivariate nonuniform rational B-splines (NURBS) under loading and investigated using the isogeometric analysis (IGA) for simulation. The results produced with the IGA simulation are compared with the corresponding values derived from the classical estimation method with the Lewis equation and FEM analysis using ANSYS. Both results are in good agreement and confirm that the IGA model is more accurate than the FEM one. This study demonstrated that IGA was practically applicable, providing an alternative means of using high-precision geometry of 3D models to estimate the behavior of gear bodies under loading and modify their strength calculations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call