Abstract
This paper describes a rule-based Driver Scoring System model, derived from behavioral data collected using a driving simulator. It introduces a novel approach to establish driver profiles through feature engineering of acquired dataset, with features evaluating various aspects of driver behavior. The research aims to provide employers and drivers with profile-specific feedback and recommendations to design training protocols. Principal Component Analysis is applied on preprocessed dataset from 412 drivers for dimensionality reduction and feature selection. The K-means clustering algorithm is used for data analysis, resulting in three distinct clusters. The Kruskal-Wallis test, supplemented by post hoc Dunn testing is employed to determine statistical significance between clusters. Clusters are portrayed using descriptive statistics, specifically the mean scores and overall driver performance averages. Our method delineates three driver profiles, with two driving styles reflecting desirable driving skills and good overall performance, while the third represents unacceptable driving skills and bad overall performance.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.