Abstract

Secondary effects on thermal fatigue of solder joints, which frequently have been neglected, were studied by means of the finite element method (FEM). Based on a semi-empirical approach to predict fatigue life by evaluating the cyclic accumulated equivalent creep strain or energy density, effects of organic boards intrinsic properties on solder joint fatigue were investigated. Aspects of more realistic FR-4 board modelling were studied, in particular concerning its in-plane anisotropy and intrinsic warpage behaviour. Intrinsic board warpage was measured on test board level as well as for boards from series production. High intrinsic warpage was in particular found for several test boards. The effects for the worst case scenario observed so far were analysed for both first level and second level interconnects. The change in predicted fatigue life varied between 30% and 500%, the latter most critical effects were found at large QFN components. Another secondary effect studied was to include the frequently neglected interfacial intermetallics into FEM. It turned out that for components with relatively large standoff like LFBGAs the effects were actually negligible, but for the highly miniaturized components like chip resistors CR0201 they are the decisive factor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.