Abstract

The immersed edge-based smoothed finite element method (IES-FEM) is proposed for the study of elastic collision particulate flow. Particle collision becomes more realistic by using the penalty function and the hyperelastic constitutive model. The effects of grid resolution and Reynolds numbers on particle terminal velocity and drag coefficient are discussed to verify the calculation accuracy and stability. Single-particle collisions with the bottom and side walls are analyzed and experimentally verified. Results show that the calculation error of IES-FEM is less than 0.6% when the fluid grid size is 0.5 times the particle mesh size and the time step is 10–4 s. Particle drag coefficient and flow characteristics agree well with the published models and experiment results. To demonstrate the capabilities of IES-FEM in complex elastic particle systems, the collision and rebound of multiple particles are determined, including the drafting–kissing–tumbling of two circular particles; the chase, collision, and deformation of rectangular particles; and the repeated formation and separation of particle clusters. This work extends the application of IES-FEM in particle-resolved direct numerical simulation methods, which will provide an optional tool for future elastic blood cell flow and collision.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call