Abstract

The drag force on a cylindrical particle is calculated using lattice Boltzmann method. The results show that the drag coefficient of a particle with different orientation angles decreases with increasing Reynolds number. When the principal axis of the particle is parallel to flow, the drag coefficient is much larger than that of others and decreases fastest with increasing Reynolds number, which becomes more obvious with increasing particle aspect ratio. When the principal axis of the particle is inclined to flow, the drag coefficient is nearly the same for different particle aspect ratios. In the case of flow with small Reynolds number ( Re < 100), the drag coefficient decreases with increasing orientation angle at different aspect ratios and Reynolds numbers. The drag coefficient is more sensitive to particle orientation angle when the particle orientation angle is small and the aspect ratio is large. Finally, a new correlation formula for the drag coefficient of cylindrical particle is established, with which the drag force on a cylindrical particle can be directly calculated based on the Reynolds number, particle aspect ratio and orientation angle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.