Abstract
The spring-block model proposed by Olami, Feder and Christensen (OFC) has several properties that are similar to those observed in real seismicity. In this paper we propose a modification of the original model in order to take into account that in a real fault there are several regions with different properties (non-homogeneity). We define regions in the network that is reminiscent of the real seismic fault, with different sizes and elastic parameter values. We obtain the Gutenberg-Richter law for the synthetic earthquake distributions of magnitude and the stair-shaped plots for the cumulative seismicity. Again, as in the OFC-homogeneous case, we obtain the stability for the cumulative seismicity stair-shaped graphs in the long-term situation; this means that the straight line slopes that are superior bounds of the staircases have a behavior akin to the homogeneous case. We show that with this non-homogeneous OFC model it is possible to include the asperity concept to describe high-stress zones in the fault.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have