Abstract

Numerical simulations and optimizations methods are increasingly used in the field of kinetic analysis of solid-state processes, such as the crystallization of glassy materials. The influence of the simulations accuracy (with the two main factors being the initial value of conversion rate and the density of points) on the kinetic distortions was tested for the major solid-state kinetic models: nucleation-growth Johnson–Mehl–Avrami model, nth order reaction model, autocatalyzed nth order reaction model, diffusion models, contracting cylinder and contracting sphere models. The simulations were performed using a self-developed software based on the LSODA initial-value-problem-solver; the evaluation of the changes in the shape of the kinetic peaks was done using a commercial software that utilizes a standardized multivariate kinetic analysis approach. The accuracy was found to be influenced mainly by initial value of conversion rate. For majority of the tested kinetic models, the simulation accuracy had negligible effect on the consequently determined values activation energy, pre-exponential factor, integrated area of the kinetic peaks, or the asymmetry-determining values of the models kinetic exponents. Significant influence of the simulation accuracy was observed for the models with active autocatalytic features, which were identified to be the main source of the deviations introduced and propagated through the simulation algorithm. Contrary to the previous research, the deviations of the simulated peaks shape cannot be associated solely with the positive asymmetry of the kinetic peaks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.