Abstract
PurposeThe purpose of this study is use to density functional theory (DFT) to investigate the molecular adsorption by PEDOT:PSS for different doping levels. DFT calculations are performed using the SIESTA code. In addition, the non-equilibrium Green’s function method is used within the TranSIESTA code to determine the quantum transport properties of molecular nanodevices.Design/methodology/approachDensity functional theory (DFT) is used to investigate the molecular adsorption by PEDOT:PSS for different doping levels. DFT calculations are performed using the SIESTA code. In addition, the non-equilibrium Green’s function method is used within the TranSIESTA code to determine the quantum transport properties of molecular nanodevices.FindingsSimulation results show very good sensitivity of Pd-doped PEDOT:PSS to ammonia, carbon dioxide and methane, so this structure cannot be used for simultaneous exposure to these gases. Silver-doped PEDOT:PSS structure provides a favorable sensitivity to ammonia in addition to exhibiting a better selectivity. If the experiment is repeated, the sensitivity is increased for a larger concentration of the applied gas. However, the sensitivity will decrease at a higher ratio than smaller concentrations of gas.Originality/valueThe advantages of the proposed sensor are its low-cost implementation and simple fabrication process compared to other sensors. Moreover, the proposed sensor exhibits appropriate sensitivity and repeatability at room temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.