Abstract

In this article, the formation of laser-induced graphene on the two natural polymers, cellulose, and lignin, as precursors was investigated with molecular dynamics simulations and some experiments. These eco-friendly polymers provide significant industrial advantages due to their low cost, biodegradability, and recyclable aspects. It was discovered during the simulation that LIG has numerous defects and a porous structure. Carbon monoxide, H2, and water vapor are gases released by cellulose and lignin substrates. H2O and CO are released when the polymer transforms into an amorphous structure. Later on, as the amorphous structure changes into an ordered graphitic structure, H2 is released continuously. Since cellulose monomer has a higher mass proportion of oxygen (49%) than lignin monomer (29%), it emits more CO. The LIG structure contains many 5- and 7-carbon rings, which cause the structure to have bends and undulations that go out of the plane. In addition, to verify the molecular dynamics simulation results with experimental tests, we used a carbon dioxide laser to transform filter paper, as a cellulose material, and coconut shell, as a lignin material, into graphene. Surprisingly, empirical experiments confirmed the simulation results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.