Abstract

In the regeneration of turbine or compressor blades each blade damage is varying in location, size and shape, depending on the cause of damage. An important regeneration step is the re-contouring which is applied after the deposit welding to remove excess material. With complex blade shapes this step requires 5-axis machining methods. Due to different cases of damage, the re-contouring has to be adapted to each individual repair case to satisfy the high quality requirements regarding the final workpiece. This paper combines the two topics machining strategy and emerging workpiece quality. In this context the work demonstrates a simulation-based approach for the 5-axis re-contouring process. Hence, different 5-axis tool-paths strategies are applied on an analogy repair case including a modelled weld shape. The re-contouring is performed virtually via a dexel based material removal simulation as well as experimentally by using a 5-axis milling machine. Afterwards an evaluation of the different tool-path strategies is done considering achieved workpiece quality. The results imply that the simulation is applicable to predict certain aspects of the workpiece quality such as surface topography. With the simulation system, a tool-path evaluation is possible before re-contouring real workpieces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.