Abstract
The dome reinforcement (DR) technology was studied to reduce the amount of carbon fiber of the type IV hydrogen storage vessel in this paper. Firstly, the influence of the angle and thickness of the dome reinforcement part on the stress distribution of the dome section is studied by finite element analysis. Secondly, the weight reduction of carbon fiber composite layer is studied based on the dome reinforcement model. The strain-based Hashin progressive damage model is used to predict the burst pressure and burst mode with user-defined material subroutine (UMAT) of ABAQUS. Finally, the dome reinforcement technology is further verified in comparison with non-dome reinforcement by burst tests. The results show that the progressive damage model can effectively represent matrix cracking and fiber fracture, and the predicted burst pressure and mode is consistent with the test results. The fiber stress near the equator of the dome section affects the burst mode, and the smaller the angle of dome reinforcement parts, the better the reinforcing effect, and the dome reinforcement technology can help to improve the fiber damage state at the dome, transfer the maximum stress to the cylinder section of the vessel, and ensure the burst mode to be a safe mode. Also, it can help to reduce the consumption of carbon fiber by up to 5.5% in composite material.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.