Abstract

Aerosol infrared stealth technology is a highly effective method to reduce the intensity of infrared radiation by releasing aerosol particles around the hot exhaust plume. This paper uses a Computational Fluid Dynamics (CFD) two-phase flow model to simulate the exhaust plume fields of three kinds of engine nozzles containing aerosol particles. The Planck-weighted narrow spectral band gas model and the Reverse Monte Carlo method are used for infrared radiation transfer calculations to analyze the influencing factors and laws for the suppression of the infrared radiation properties of exhaust plumes by four typical aerosol particles. The simulation calculation results show that the radiation suppression efficiency of aerosol particles on the exhaust plume reaches its maximum value at a detection angle (ϕ) of 0° and decreases with increasing ϕ, reaching its minimum value at 90°. Reducing the aerosol particle size and increasing the aerosol mass flux can enhance the suppression effect. In the exhaust plume studied in this paper, the radiation suppression effect is best when the particle size is 1 μm and the mass flux is 0.08 kg/s. In addition, the inhibition of aerosol particles varies among different materials, with graphite having the best inhibition effect, followed by H2O, MgO, and SiO2. Solid particles will increase the radiation intensity and change the spectral radiation characteristics of the exhaust plume at detection angles close to the vertical nozzle axis due to the scattering effect. Finally, this paper analyzed the suppression effects of three standard nozzle configurations under the same aerosol particle condition and found that the S-bend nozzle provides better suppression.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.