Abstract

Environmental risk of high sulfur gas field exploitation has become one of the hot spots of environmental management studies. Severe gas H2S blowout accidents in recent years have shown that poor understanding and estimates of the poisonous gas movement could lead to dangerous evacuation delays. It is important to evaluate the real concentration of H2S, especially in complex terrain. Traditional experiential models are not valid in the case of rough terrain, especially in low-lying areas where the gas accumulates. This study, using high sulfur content gas field of Sichuan “Pu Guang gas field” as study object and adopting objective diagnosis of wind field of land following coordinate three dimensions, applied Lagrangian Puff Model and breaking up technique of puffs to simulate the H2S diffusion condition of blowout accidents produced in the high sulfur content gas field of complex terrain area. The results showed that the H2S distribution did not occur mainly in low wind direction, and due to the obstruction of the mountain’s body, it accumulated in front of mountain on produced turn over, flowed around submitted jumping type distribution. The mountain waist near the hilltop and low hollow river valley site rapture points simulating contrast showed that the higher the rapture point, the better the diffusing condition of pollutant, the distribution of risk sensitive point decided piping rupture environmental risk size combining the H2S diffusion result and residential area dispersing in the study area, synthetic judge located in the high rapture point environmental risk was smaller than the low hollow point, thus it was suggested to carryout laying of lining build of equal high line of higher terrain. According to simulation results, the environmental risk management measures aimed at putting down adverse effects were worked out.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.