Abstract

Fe-Mn binary oxide incorporated into porous diatomite (FMBO-diatomite) was prepared in situ and regenerated in a fixed-bed column for arsenite [As(III)] and arsenate [As(V)] removal. Four consecutive adsorption cycles were operated under the following conditions: Initial arsenic concentration of 0.1 mg·L−1, empty bed contact time of 5 min, and pH 7.0. About 3000, 3300, 3800, and 4500 bed volumes of eligible effluent (arsenic concentration ⩽ 0.01 mg·L−1) were obtained in four As (III) adsorption cycles; while about 2000, 2300, 2500, and 3100 bed volumes of eligible effluent were obtained in four As(V) adsorption cycles. The dissection results of FMBO-diatomite fixed-bed exhibited that small amounts of manganese and iron were transferred from the top of the fixed-bed to the bottom of the fixed-bed during As(III) removal process. Compared to the extremely low concentration of iron (<0.01 mg·L−1), the fluctuation concentration of Mn2+ in effluent of the As(III) removal column was in a range of 0.01–0.08 mg·L−1. The release of manganese suggested that manganese oxides played an important role in As(III) oxidation. Determined with the US EPA toxicity characteristic leaching procedure (TCLP), the leaching risk of As(III) on exhausted FMBO-diatomite was lower than that of As(V).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call