Abstract

利用数值模拟软件ISE TCAD对绝缘层上应变SiGe(SGOI)和Si(SOI)p-MOSFET的电学特性进行了二维数值模拟.计算结果表明,与传统的SOI p-MOSFET相比,SGOI p-MOSFET的漏源饱和电流几乎要高出两倍; 其亚阈值电流要高出1~3个数量级.Ge合金组分作为应变SiGe沟道MOSFET的重要参数,就不同Ge合金组分对SGOI p-MOSFET的电学特性的影响也进行了较为深入的研究.随着Ge合金组分的增大,SGOI p-MOSFET的总体电学性能有所提高.;In this paper, the strained SiGe-on-Insulator (SGOI) p-MOSFET and Si-on-Insulator (SOI) p-MOSFET are respectively studied via 2-D numerical simulation by ISE TCAD software. The results indicate that compared with the conventional SOI p-MOSFET, the drain-source saturation current of SGOI p-MOSFET almost more than twice, the sub-threshold current of SGOI p-MOSFET has 1~3 orders of magnitude higher than that of SOI p-MOSFET. Because Ge alloy mole fraction is an important basic parameter to the strained SiGe channel MOSFET, the effect of Ge alloy mole fraction on the electrical characteristics of the SGOI p-MOSFET is in depth study in this paper. With the increasing of Ge alloy mole fraction, the overall electrical properties of SGOI p-MOSFET are improved.The strained SiGe-on-Insulator (SGOI) p-MOSFET and Si-on-Insulator (SOI) p-MOSFET were studied via 2-D numerical simulation by ISE TCAD software, respectively. The results indicate that the drain-source saturation current of SGOI p-MOSFET is almost more than twice that of conventional SOI p-MOSFET. The sub-threshold current of SGOI p-MOSFET is 1~3 orders of magnitude higher than that of SOI p-MOSFET. Because Ge alloy mole fraction is an important parameter for the strained SiGe channel MOSFET, its effect on the electrical characteristics of the SGOI p-MOSFET was studied in detail. With the increasing of Ge alloy mole fraction, the overall electrical properties of SGOI p-MOSFET were improved.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call