Abstract

This article investigates spin-transfer torque magnetic random access memories (STT-MRAMs) based on double-barrier magnetic tunnel junction (DMTJ) with two reference layers when operating at cryogenic temperatures. Our study is based on architecture-level estimations relying on preliminary bitcell-level electrical simulations, which have been carried out by exploiting a macrospin-based Verilog-A compact model of DMTJ, along with a 65 nm cryogenic-aware CMOS technology. Compared to conventional six-transistor static random access memory (6T-SRAM), DMTJ-based STT-MRAM proves to be faster under read access and less energy-hungry under both read/write accesses for medium to large memory sizes. Quantitatively, compared to its 6T-SRAM counterpart, a 2 MB DMTJ-based STT-MRAM operating at 77 K improves read access time by 28% and energy consumption by 52% and 38% for read and write operations, respectively. This is achieved while providing considerably lower leakage power (-98%) and a smaller on-chip area (by about 3×), at the only cost of worsened write access time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.