Abstract

To tackle the influence of foam filling on the sound radiation performance of reinforced sandwich panels, this study employs a combined approach of experiments and simulations to investigate the factors that impact the sound radiation performance in the 1–2000 Hz mid–low frequency range. The aim is to determine how the parameters of foam impact the sound radiation performance of foam-filled reinforced sandwich panels. The results indicate that changes in the acoustic parameters of the foam have a weak effect on the frequency corresponding to the peak sound radiation power and the non-peak frequency range sound radiation performance of the sandwich panel, while significantly impacting the peak sound radiation power. Among them, porosity has the least influence on sound radiation performance, whereas static flow resistivity and tortuosity factors have a greater influence on peak sound radiation performance. The reduction in thermal characteristic length and the increase in static flow resistivity can both enhance the sound radiation performance of the panel, while the impact of tortuosity factor and viscous characteristic length on panel sound radiation performance depends on the frequency range.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call