Abstract
To optimize the welding process of the upper frame of the hydropower unit, a thermal elastic–plastic (TEP) finite element model of the typical T-joint of the upper frame was established, and the effectiveness and accuracy of the model were verified by welding tests. The effect of welding speed and interlayer cooling time on welding residual stress and deformation was analyzed, and a welding process in line with the requirements was obtained. Based on the results of the TEP calculation, the inherent strain was obtained, and the inherent strain method (ISM) was used to predict the overall deformation of the upper frame under three welding sequence schemes, and the optimal welding sequence was obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.