Abstract

Compliant mechanisms are gaining popularity in many different fields, such as in microelectromechanical systems (MEMS), medical applications and health care, opto-mechatronic technology, aerospace engineering, and semiconductor equipment. One of the areas for utilizing compliant mechanisms is building models of human hand counterparts. These models are often used as grasping and rehabilitation devices. Because of their properties, creating a human hand counterpart with compliant mechanisms is a much better choice compared with the models with traditional mechanisms; it looks more realistic, and its movements are much more natural compared with models with a traditional mechanism. A method of modeling and designing such a bio-inspired mechanism, as well as its experimental analysis with various forces applied, is presented in this paper. Two prototypes of the compliant fingers were obtained by 3D printing, and the calculation of the bending angle values was achieved by applying image processing to camera images of the compliant fingers’ prototypes. Image processing was conducted on images taken for both loaded and unloaded 3D-printed compliant finger prototype positions. Finally, these bending angle results are compared with the results obtained by Finite Element Method (FEM) analysis and experimental results acquired by a digital protractor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call