Abstract
In this study, we thoroughly analyzed the linearity and repeatability of force-sensing resistor (FSR) sensors through static load tests to ensure their reliability. The novelty of this research lies in its comprehensive evaluation and direct comparison of two widely used FSR sensors, i.e., Flexiforce A201-1 and Interlink FSR-402, under various loading conditions by employing a robust calibration methodology. This study provides detailed insights into the sensors’ performances, offering practical calibration equations that enhance measurement precision and reliability, which have not been extensively documented in previous studies. Our results demonstrate that the linearity of thin film FSR sensors is highly accurate, closely resembling a straight line. We employed M1 Class weights, applying loads ranging from 20 g to 300 g. The resistance of the FSR sensors, which varies with the applied load, was measured using a voltage divider circuit and an analog-to-digital converter of a microcontroller. MATLAB was used to calculate the average output voltage for each applied load and fixed resistance. Additionally, we examined the relationships among load, FSR sensor resistance, and conductivity. Our research indicates that with precise calibration, thin film FSR sensors can be highly reliable for force measurement applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.