Abstract

The simulation accuracy of transvertebral ultrasound propagation using a multi-layered ray acoustics model based on CT-derived vertebral geometry was investigated through comparison with experimental measurements of pressure fields in ex vivo human vertebral foramen. A spherically focused transducer (5 cm diameter, f-number 1.2, 514 kHz) was geometrically focused to the centre of individual thoracic vertebral foramen, through the posterior bony elements. Transducer propagation paths through the laminae and the spinous processes were tested. Simulation transducer-vertebra configurations were registered to experiment transducer-vertebra configurations, and simulation accuracy of the simulation model was evaluated for predicting maximum transmitted pressure to the canal, voxel pressure in the canal, and focal distortion. Accuracy in predicting maximum transmitted pressure was calculated by vertebra, and it is shown that simulation predicts maximum pressure with a greater degree of accuracy than a vertebra-specific insertion loss. Simulation error in voxel pressure was evaluated using root-mean-square error and cross-correlation, and found to be similar to the water-only case. Simulation accuracy in predicting focal distortion was evaluated by comparing experiment and simulation maximum pressure location and weighted >50% focal volume location. Average simulation error across all measurements and simulations in maximum pressure location and weighted >50% focal volume location were 2.3 mm and 1.5 mm, respectively. These errors are small relative to the dimensions of the transducer focus (4.9 mm full width half maximum), the spinal cord (10 mm diameter), and vertebral canal diameter (15–20 mm diameter). These results suggest that ray acoustics can be applied to simulating transvertebral ultrasound propagation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call