Abstract
Roll-to-plate nanoimprinting with flexible stamps is a fabrication method to pattern large-area substrates with micro- and nanotextures. The imprint consists of the preferred texture on top of a residual layer, of which the thickness and uniformity is critical for many applications. In this work, a numerical model is developed to predict the residual layer thickness (RLT) as a function of the imprint parameters. The model is based on elastohydrodynamic lubrication (EHL) theory, which combines lubrication theory for the pressure build-up in the resin film, with linear elasticity theory for the elastic deformation of the roller material. The model is extended with inextensible cylindrical shell theory to capture the effect of the flexible stamp, which is treated as a tensioned web. The results show that an increase in the tension of the web increases the effective stiffness of the roller, resulting in a reduction in the RLT. The numerical results are validated with layer height measurements from flat layer imprints. It is shown that the simulated minimum layer height corresponds very well with the experimental results for a wide range of resin viscosities, imprint velocities, and imprint loads.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.