Abstract

Based on Gonçalves's geometrically exact beam theory considering cross-section deformation, the warping and distortional deformation of thin-walled members are described in this paper by means of a combination of section deformation modes. By integrating with the J2 elastic‒plasticity theory for the steel, a numerical model is established for the hysteretic behaviour of thin-walled steel members. Four classes of H-section members are selected on account of the design codes, and the influence of section warping and distortion deformation modes on the calculation of the hysteretic behaviour of components with different section types is analysed. The crucial aspect lies in the bending hysteresis behaviour around the strong and weak axes of the cross-section for H-beam steel members subjected to typical thin-walled members with relatively large widths and thicknesses. Test results on the hysteretic behaviour of H-section steel members are compared with those calculated from the proposed model in terms of the hysteric behaviour of components, strength degradation, energy-dissipating capacity, etc. These findings validate the correctness and feasibility of the established non-linear analysis model for thin-walled members.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call