Abstract

Changes in coastal habitats due to sea-level rise provide an uncertain, yet significant threat to shoreline dependent birds. Rising sea levels can cause habitat fragmentation and loss which can result in considerable reduction in their foraging and nesting areas. Computational models and their algorithmic assumptions play an integral role in exploring potential mitigation responses to uncertain and potentially adverse ecological outcomes. The presence of uncertainty in metapopulation models is widely acknowledged but seldom considered in their development and evaluation, specifically the effects of uncertain model inputs on the model outputs. This paper was aimed to (1) quantify the contribution of each uncertain input factor to the uncertainty in the output of a metapopulation model which evaluated the effects of long-term sea-level rise on the population of Snowy Plovers ( Charadrius alexandrinus) found in the Gulf Coast of Florida, and (2) determine the ranges of model inputs that produced a specific output for the purpose of formulating environmental management decisions. This was carried out by employing global sensitivity and uncertainty analysis (GSA) using two generic (model independent) methods, the qualitative screening Morris method and a quantitative variance-based Sobol’ method coupled with Monte Carlo filtering. The analyses were applied to three density dependence scenarios: assuming a ceiling-type density dependence, assuming a contest-type density dependence, and assuming that density dependence is uncertain as to being ceiling- or contest-dependent. The sources of uncertainty in the outputs depended strongly on the type of density dependence considered in the model. In general, uncertainty in the outputs highly depended on the uncertainty in stage matrix elements (fecundity, adult survival, and juvenile survival), dispersal rate from central areas with low current populations (the “Big Bend” area of Florida) to the northern, panhandle populations, the maximum growth rate, and density dependence type. Our results showed that increasing the maximum growth rate to a value of 1.2 or larger will increase the final average population of Snowy Plovers assuming a contest-type density dependence. Results suggest that studies that further quantify which density dependence relationship best describes Snowy Plover population dynamics should be conducted since this is the main driver of uncertainty in model outcomes. Furthermore, investigating the presence of Snowy Plovers in the Big Bend region may be important for providing connection between the panhandle and peninsula populations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.