Abstract

PILATUS systems are well established as X-ray detectors at most synchrotrons. Their single photon counting capability ensures precise measurements, but introduces a short dead time after each hit, which becomes significant for photon rates above a million per second and pixel. The resulting loss in the number of counted photons can be corrected for by applying corresponding rate correction factors. This article presents a Monte-Carlo simulation, which computes the correction factors taking into account the detector settings as well as the time structure of the X-ray beam at the synchrotron. For the PILATUS2 detector series the simulation shows good agreement with experimentally determined correction factors for various detector settings at different synchrotrons. The application of more accurate rate correction factors will improve the X-ray data quality at high photon fluxes. Furthermore we report on the simulation of the rate correction factors for the new PILATUS3 systems. The successor of the PILATUS2 detector avoids the paralysation of the counter, and allows for measurements up to a rate of ten million photons per second and pixel. For fast detector settings the simulation is capable of reproducing the data within one to two percent at an incoming photon rate of one million per second and pixel.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call