Abstract

The PILATUS detector system is widely used for X-ray experiments at third-generation synchrotrons. It is based on a hybrid technology combining a pixelated silicon sensor with a CMOS readout chip. Its single-photon-counting capability ensures precise and noise-free measurements. The counting mechanism introduces a short dead-time after each hit, which becomes significant for rates above 10(6) photons s(-1) pixel(-1). The resulting loss in the number of counted photons is corrected for by applying corresponding rate correction factors. This article presents the results of a Monte Carlo simulation which computes the correction factors taking into account the detector settings as well as the time structure of the X-ray beam at the synchrotron. The results of the simulation show good agreement with experimentally determined correction factors for various detector settings at different synchrotrons. The application of accurate rate correction factors improves the X-ray data quality acquired at high photon fluxes. Furthermore, it is shown that the use of fast detector settings in combination with an optimized time structure of the X-ray beam allows for measurements up to rates of 10(7) photons s(-1) pixel(-1).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.