Abstract

Araucaria angustifolia (Bertol.) Kuntze, commonly known as Brazilian pine, is a significant tree species in the Brazilian flora that once covered an area of 200,000 km2 in the Southern region. During the 1970s, high-quality timber logs from this conifer became the primary export product of the country. However, the species is endangered due to uncontrolled exploitation and is subject to a harvesting ban. It is crucial, therefore, to explore sustainable cultivation methods for this species, which necessitates urgent research and scientific insights. In this study, we present a simulation of a management strategy for in situ conservation by manipulating growth space and crown size dynamics. Forest inventory data and mixed forest regression equations were employed to describe the horizontal dimensions of average and maximum potential crown growth, resulting in two management scenarios. The results presented in management diagrams show that both approaches required logging numerous trees to ensure adequate space for healthy tree growth and provide soil coverage and forest protection. Therefore, the absence of effective forest management initiatives for Araucaria forests may have further implications for the structure, production, conservation, and overall development. To address these challenges, we propose two hypotheses: firstly, that tree diameter depends on crown dimensions, which are in turn influenced by tree growth space, and, secondly, that crown dimensions serve as a reliable indicator of existing competition and can be utilized to simulate forest management practices. We urge that implementing sustainable forest management initiatives for Araucaria angustifolia at selected locations can contribute to expanding natural forest areas, mitigate deterioration caused by high competition, discourage illegal logging, and prevent overexploitation of their edible seeds, which hinders regeneration. Our results underscore the significant implications of the lack of forest management initiatives in rural properties, potentially resulting in irreversible deterioration. The exact consequences of this deterioration remain unclear, emphasizing the need for further studies to understand its eventual effects on the growth reaction of trees of different diameters, ages, and crown conditions after the liberation of their crowns.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call