Abstract

Representing a strongly interacting multi-particle wave function in a finite product basis leads to errors. Simple rescaling of the contact interaction can preserve the low-lying energy spectrum and long-wavelength structure of wave functions in one-dimensional systems and thus correct for the basis set truncation error. The analytic form of the rescaling is found for a two-particle system where the rescaling is exact. Detailed comparison between finite Hilbert space calculations and exact results for up to 5 particles show that rescaling can significantly improve the accuracy of numerical calculations in various external potentials. In addition to ground state energies, the low-lying excitation spectrum, density profile and correlation functions are studied. The results give a promising outlook for numerical simulations of trapped ultracold atoms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.