Abstract

AbstractThe “classical” approach to represent Petri nets by graph transformation systems is to translate each transition of a specific Petri net to a graph rule (behavior rule). This translation depends on a concrete model and may yield large graph transformation systems as the number of rules depends directly on the number of transitions in the net. Hence, the aim of this paper is to define the behavior of Algebraic High-Level nets, a high-level Petri net variant, by a parallel, typed, attributed graph transformation system. Such a general parallel transformation system for AHL nets replaces the translation of transitions of specific AHL nets. After reviewing the formal definitions of AHL nets and parallel attributed graph transformation, we formalize the classical translation from AHL nets to graph transformation systems and prove the correctness of the translation. The translation approach then is contrasted to a definition for AHL net behavior based on parallel graph transformation. We show that the resulting amalgamated rules correspond to the behavior rules from the classical translation approach.KeywordsGraph TransformationPartial CoveringInteraction SchemeGraph GrammarRule SchemeThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call